Investigation of the tetraneutron by quasi-free α -knockout from ⁸He

F. Schindler,^{*1} T. Aumann,^{*1,*2} S. Paschalis,^{*3,*1} D. M. Rossi,^{*1} N. L. Achouri,^{*4} D. Ahn,^{*5} H. Baba,^{*5} C. A. Bertulani,^{*6} M. Boehmer,^{*7} K. Boretzky,^{*2,*5} N. Chiga,^{*5} A. Corsi,^{*4} D. Cortina-Gil,^{*8} C. A. Douma,^{*9}

F. Dufter,^{*7} Z. Elekes,^{*10,*5} J. Feng,^{*11} B. Fernández-Domínguez,^{*8} U. Forsberg,^{*12} N. Fukuda,^{*5}

F. Dufter,^{*7} Z. Elekes,^{*10,*5} J. Feng,^{*11} B. Fernández-Domínguez,^{*8} U. Forsberg,^{*12} N. Fukuda,^{*5}
I. Gasparic,^{*13,*5} Z. Ge,^{*5} R. Gernhäuser,^{*7} J. M. Gheller,^{*14} J. Gibelin,^{*4} A. Gillibert,^{*14} Z. Halász,^{*10}
M. N. Harakeh,^{*9} A. Hirayama,^{*15,*5} N. Inabe,^{*5} T. Isobe,^{*5} J. Kahlbow,^{*1,*5} N. Kalantar-Nayestanaki,^{*9}
D. Kim,^{*16,*5} S. Kim,^{*1} M. A. Knösel,^{*1} T. Kobayashi,^{*17} Y. Kondo,^{*15,*5} D. Körper,^{*2} P. Koseoglou,^{*1,*2}
Y. Kubota,^{*5} I. Kuti,^{*10} P. J. Lee,^{*18} C. Lehr,^{*1,*5} S. Lindberg,^{*19,*5} Y. Liu,^{*11} F. M. Marqués,^{*4}
S. Masuoka,^{*20} M. Matsumoto,^{*15,*5} J. Mayer,^{*21} B. Monteagudo,^{*22} T. Nakamura,^{*15,*5} A. Obertelli,^{*1}
N. Orr,^{*4} H. Otsu,^{*5} V. Panin,^{*5} S. Y. Park,^{*16,*5} M. Parlog,^{*4} P.-M. Potlog,^{*23} S. Reichert,^{*7} A. Revel,^{*22}
A. T. Saito,^{*15,*5} M. Sasano,^{*5} H. Scheit,^{*1} S. Shimoura,^{*20} H. Simon,^{*2} L. Stuhl,^{*20} H. Suzuki,^{*5}
D. Symochko,^{*1} H. Takeda,^{*5} J. Tanaka,^{*1} Y. Togano,^{*24,*5} T. Tomai,^{*15,*5} M. Yasuda,^{*1,*5} T. Uesaka,^{*5}
V. Wagner,^{*1,*5} H. Yamada,^{*15,*5} B. Yang,^{*11} L. Yang,^{*25} Z. H. Yang,^{*5} M. Yasuda,^{*15,*5} K. Yoneda,^{*5}

L. Zanetti,^{*1,*5} and J. Zenihiro^{*5}

The possible existence of a four-neutron system as well as its properties has been a long-lasting question in nuclear physics that can be traced back to the mid-1960s.¹⁾ A recent experiment carried out at the SHARAQ spectrometer uncovered 4 candidate events for a 4n ground-state resonance at $E_{^4n}~=~0.83~\pm$ $0.65(\text{stat}) \pm 1.25(\text{syst})$ MeV with a 4.9σ significance level generated in a ${}^{4}\text{He}({}^{8}\text{He}, {}^{8}\text{Be})$ reaction.²⁾ This measurement triggered new enthusiasm for both theoretical and experimental investigations of the tetraneutron system. State-of-the-art ab initio theory indeed supports the existence of a low-lying 4n resonance.³⁻⁵) However, the definite experimental evidence is still pending.

To this end, we have performed an experiment at SAMURAI⁶⁾ to investigate the ${}^{4}n$ system via a new method, *i.e.*, the measurement of ${}^{8}\text{He}(p, p\alpha)^{4}n$ at large momentum transfer using a secondary ⁸He beam at an energy of 156 MeV/nucleon impinging on a liquidhydrogen target of 5 cm thickness from the MINOS

*2 GSI, Darmstadt

- *5**RIKEN** Nishina Center
- *6 Texas A&M University-Commerce
- *7 Technische Universität München
- *8 University of Santiago de Compostela
- *9 KVI-CART, University of Groningen
- $^{\ast 10}$ MTA ATOMKI, Debrecen
- *11 Peking University
- *12 Lund University
- *13 RBI, Zagreb
- *14 CEA, Saclay
- $^{\ast 15}$ Tokyo Institute of Technology $^{\ast 16}$ Ewha Womans University, Seoul
- *17 Tohoku University
- *18Hongkong University
- *¹⁹ Chalmers University of Technology, Göteborg
- *20
- CNS, University of Tokyo
- $^{\ast 21}$ Universität zu Köln
- $^{\ast\,22}$ GANIL, Caen
- *²³ Institute of Space Sciences, Magurele
- *24 Rikkyo University
- *²⁵ University of Tokyo

Fig. 1. Kinematics of the ${}^{8}\text{He}(p,p\alpha)^{4}n$ reaction.

system. The ⁸He nucleus is expected to be a suitable environment to form the ${}^{4}n$ system in a ground-state resonance and the reaction process described above will allow for its unambiguous identification. As a consequence of the reaction kinematics (see Fig. 1) all outgoing particles are largely separated in momentum space, *i.e.*, final-state interactions are minimized and the reaction products of interest have a clean signature.

The ${}^{4}n$ -energy spectrum will be deduced from the momenta of all charged particles *via* the missing-mass technique to identify the possible resonance and to determine its energy and width. Neutrons have been measured in addition with the combination of the neutron detectors R³B-NeuLAND demonstrator and NEBULA, allowing for a kinematically complete investigation of the reaction and the study of the 4n decay properties with lower but sufficient statistics. To reduce systematic uncertainties of the missing-mass reconstruction, an invariant-mass measurement for ⁶He, *i.e.*, ${}^{6}\text{He}(p,p\alpha)^{2}n$ has been carried out for the purpose of calibration. The data analysis is in progress.

References

- 1) D. R. Tilley et al., Nucl. Phys. 541, 1104 (1992).
- 2) K. Kisamori et al., Phys. Rev. Lett. 116, 052501 (2016).
- 3) K. Fossez et al., Phys. Rev. Lett. 119, 032501 (2017).
- 4) S. Gandolfi *et al.*, Phys. Rev. Lett. **118**, 232501 (2017).
- 5) A. M. Shirokov et al., Phys. Rev. Lett. 117, 182502 (2016).
- 6) T. Kobayashi et al., Nucl. Instrum. Methods Phys. Res. B 317, 294 (2013).

^{*1} Technische Universität Darmstadt

^{*3} University of York

^{*4} Laboratoire de Physique Corpusculaire de Caen