P. Koseoglou,^{*1,*2} V. Werner,^{*1} P.-A. Söderström,^{*1,*2} M. Lettmann,^{*1} N. Pietralla,^{*1} P. Doornenbal,^{*3}

A. Obertelli,^{*4,*1,*3} N. Achouri,^{*4} H. Baba,^{*3} F. Browne,^{*3} D. Calvet,^{*4} F. Château,^{*4} S. Chen,^{*5,*6,*3}

N. Chiga,^{*3} A. Corsi,^{*4} M. L. Cortés,^{*3} A. Delbart,^{*4} J-M. Gheller,^{*4} A. Giganon,^{*4} A. Gillibert,^{*4} C. Hilaire,^{*4} T. Isobe,^{*3} T. Kobayashi,^{*7} Y. Kubota,^{*3,*8} V. Lapoux,^{*4} H. Liu,^{*4,*9} T. Motobayashi,^{*3} I. Murray,^{*3,*10}

S. Takeuchi,^{*20} H. Toernqvist,^{*2} V. Vaquero,^{*23} V. Wagner,^{*1} S. Wang,^{*24} X. Xu,^{*6} H. Yamada,^{*20} D. Yan,^{*24}

Z. Yang,^{*3} M. Yasuda,^{*20} and L. Zanetti^{*1}

Evidence for the existence of a new "magic number," N = 34, has been obtained from the level structure of ⁵⁴Ca¹) while there may not be a corresponding shell gap in Ti^{2,3} isotopes. This has created recent interest to study the evolution of neutron-rich scandium isotopes. These nuclei lie between Ca and Ti and the evolution of proton orbitals can reveal the nature of the magic numbers at N = 34, recently shown to vanish in 55 Sc,⁴⁾ and the N = 40 pf-shell closure. In this case the valence proton occupies the $\pi f_{7/2}$ orbital, interacting with $\nu f_{5/2}$ orbital in ^{57, 59, 61}Sc.

The DALI2+ array has been coupled with the wide acceptance SAMURAI spectrometer⁵⁾ in the third SEASTAR campaign. This made the measurement of the energies of low-lying states of a large number of isotopes in the previously discussed mass region possible. The radioactive beams were produced by a primary 70 Zn beam at 345 MeV/nucleon impinging on a 10-mm-thick ⁹Be target. The BigRIPS fragment separator⁶) was used for the identification and separation

- *2 GSI Helmoltzzentrum für Schwerionenforschung GmbH
- *3 **RIKEN** Nishina Center
- *4IRFU, CEA, Université Paris-Saclay
- *5 School of Physics, Peking University
- *6Department of Physics, The University of Hong Kong
- *7Department of Physics, Tohoku University
- *8 Center for Nuclear Study, the University of Tokyo
- *9 Department of Physics, Royal Institute of Technology
- ^{*10} Institut de Physique Nucléaire Orsay, IN2P3-CNRS
- $^{\ast 11}$ Facultad de Ciencias, Departamento de Física, Sede Bogotá, Universidad Nacional de Colombia
- *12Department of Physics, University of Tokyo
- *¹³ Department of Physics, Rikkyo University
- *¹⁴ Institute for Nuclear Science & Technology, VINATOM
- $^{\ast 15}$ Rudjer Boskovic Institute, Zagreb
- $^{\ast 16}$ Institut für Kernphysik, Universität zu Köln
- $^{\ast 17}$ LPC Caen, ENSICAEN, Université de Caen
- $^{\ast 18}$ Department of Science Education, Ewha Womans Universitv
- *19Department of Physics, Ewha Womans University
- ^{*19} Department of Physics, Tokyo Institute of Technology
- *²¹ Department of Physics, University of Oslo
- *²² MTA Atomki
- $^{\ast 23}$ Instituto de Estructura de la Materia, CSIC
- *24 Institute of Modern Physics, Chinese Academy of Sciences

Fig. 1. Particle identification in BigRIPS after gating on $^{55-61}$ Sc in SAMURAI.

of the secondary beams. The Sc isotopes of interest were produced by knock-out reactions in $MINOS^{(7)}$ consisting of a 150-mm-thick LH₂ target surrounded by an active TPC. Gamma rays were measured with the DALI2+ array, consisting of 226 NaI(Tl) detectors surrounding MINOS. The reaction products were identified event-by-event using two drift chambers and a hodoscope plastic-scintillator array after Brho analysis in the SAMURAI magnet. NEBULA and Neu-LAND were used in addition for neutron detection. Figure 1 shows all reaction channels producing ${}^{55-61}$ Sc.

In a preliminary analysis, the γ rays reported in Ref. 4) for ${}^{55}Sc$ were identified in the data from the neutron knock-out reaction, ${}^{56}Sc(p,pn) {}^{55}Sc$. The full analysis of ${}^{55-61}$ Sc is on-going.

References

- 1) D. Steppenbeck et al., Nature (London) 502, 207–210 (2013).
- 2) D.-C. Dinca et al., Phys. Rev. C 71, 041302(R) (2005).
- 3) S. N. Liddick et al., Phys. Rev. Lett. 92, 072502 (2004).
- 4) D. Steppenbeck et al., Phys. Rev. C 96, 064310 (2017).
- 5) T. Kobayashi et al., Nucl. Instrum. Methods B 317, 294-304 (2013).
- 6) T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012).
- 7) A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).

^{*1} Institut für Kernphysik, Technische Universität Darmstadt