Study of the superallowed $0^+ \rightarrow 0^+ \beta$ decay of $^{70}\text{Br}^{\dagger}$

A. I. Morales,^{*1} A. Algora,^{*1,*2} B. Rubio,^{*1} K. Kaneko,^{*3} J. Agramunt,^{*1} V. Guadilla,^{*1} A. Montaner-Pizá,^{*1}

S. E. A. Orrigo,^{*1} G. de Angelis,^{*4} D. Napoli,^{*4} F. Recchia,^{*5} S. Lenzi,^{*5} A. Boso,^{*5} S. Nishimura,^{*6} G. Kiss,^{*6}

V. H. Phong,^{*6} J. Wu,^{*6} P.-A. Söderström,^{*6} T. Sumikama,^{*6} H. Suzuki,^{*6} H. Takeda,^{*6} D. S. Ahn,^{*6}

V. H. Phong, ⁶ J. Wu, ⁶ P.-A. Soderstrom, ⁷ I. Summana, ¹¹. Suzuki, ¹¹. Takeua, ¹². S. Ann, H. Baba, ⁸⁶ P. Doornebal, ⁸⁶ N. Fukuda, ⁸⁶ N. Inabe, ⁸⁶ T. Isobe, ⁸⁶ T. Kubo, ⁸⁶ S. Kubono, ⁸⁶ H. Sakurai, ⁸⁶
Y. Shimizu, ⁸⁶ C. Sidong, ⁸⁶ B. Blank, ⁸⁷ P. Ascher, ⁸⁷ M. Gerbaux, ⁸⁷ T. Goigoux, ⁸⁷ J. Giovinazzo, ⁸⁷ S. Grévy, ⁸⁷
T. Kurtukián Nieto, ⁸⁷ C. Magron, ⁸⁷ W. Gelletly, ^{81,88} Zs. Dombrádi, ⁸⁷ Y. Fujita, ⁸⁹ M. Tanaka, ⁸⁹ P. Aguilera, ⁸¹⁰
F. Molina, ⁸¹⁰ J. Eberth, ⁸¹¹ F. Diel, ⁸¹¹ D. Lubos, ⁸¹² C. Borcea, ⁸¹³ E. Ganioglu, ⁸¹⁴ D. Nishimura, ⁸¹⁵

H. Oikawa,^{*15} Y. Takei,^{*15} S. Yagi,^{*15} W. Korten,^{*16} G. de France,^{*17} P. Davies,^{*18} J. Liu,^{*19} J. Lee,^{*19}

T. Lokotko,^{*19} I. Kojouharov,^{*20} N. Kurz,^{*20} and H. Shaffner^{*20}

One of the core concepts of the Electroweak Standard Model (ESM) is the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix which describes the mixing between the three families of quarks. Increasingly high-precision measurements of the CKM matrix elements are required to set the limits on any possible physics beyond the ESM. The largest matrix element, the up-down term V_{ud} , can be extracted from high-precision measurements of half-lives, masses, and branching ratios of superallowed β transitions between $J^{\pi} = 0^+, T = 1$ analog states starting in N = Z nuclei.¹⁾ In this report we provide the most precise halflife measurement for the T = 1 $(J^{\pi} = 0^{+})$ ground state of the heavy self-conjugate nucleus ⁷⁰Br and the first estimate of the total branching fraction decaying through the first 2^+ state in the daughter nucleus, ⁷⁰Se.

The ⁷⁰Br nuclei were produced in the fragmentation of a 78 Kr primary beam at 345 MeV/nucleon and 38 pnA colliding with a 5-mm thick Be target. After separation and selection in the BigRIPS separator, the nuclei were implanted in the WAS3ABi active stopper, surrounded by the EURICA γ -ray spectrometer.²⁾

Standard delayed-coincidence techniques were applied to study the β decay of ⁷⁰Br, including an exhaustive evaluation of the factors that could influence the half-life measurement.³⁾ As an example, Fig. 1 shows

- Condensed from the article in Phys. Rev. C 95, 064327 (2017)
- *1IFIC, CSIC-Univ. Valencia
- *2 MTA ATOMKI
- *3 Department of Physics, Kyushu Sangyo University
- *4 **INFN-Legnaro**
- *5 INFN-Padova
- *6 **RIKEN** Nishina Center
- *7 CEN Bordeaux-Gradignan
- *8 Department of Physics, Surrey University
- *9 Osaka University
- *10CCHEN
- *11Institute of Nucl. Physics, Universität zu Köln
- *12Physik Department, Technische Universität München
- *13IFIN-HH, Bucarest
- *14 Department of Physics, University of Istanbul
- *15Tokyo Univ. Sci.
- *16CEA-Saclay
- $^{\ast 17}$ GANIL-Caen
- $^{\ast 18}$ Department of Physics, York University
- *¹⁹ Department of Physics, University of Hong Kong
- *²⁰ GSI, Germany

80 (a) Isomeric ms half-life 78 ratio 76 14000 20000 15000 16000 17000 18000 19000 final range [ms] 80 ms isomeric ratio 45] 78 28 28 40 150 50 100 200 250β threshold [keV]

Fig. 1. Measured half-lives for the T = 1 $(J^{\pi} = 0^{+})$ ground state (empty triangles) and isomeric ratios for the T = 0 $(J^{\pi} = 9^+)$ isomer (full dots) in ⁷⁰Br as a function of the fitting range (a) and the β threshold (b).

the half-life of the T = 1 $(J^{\pi} = 0^+)$ ground state as a function of the fitting range (a) and the β threshold (b). The average half-life deduced is shown as a thick continuous line and the total error as dotted-dashed lines. The isomeric ratio of the T = 0 $(J^{\pi} = 9^+)$ state is also shown for each lifetime fit and, in thick dashed line, the overall deduced value. The resulting half-lives for the T = 0 $(J^{\pi} = 9^+)$ isomer and the $T = 1 \ (J^{\pi} = 0^{+})$ ground state, $t_{1/2} = 2157^{+53}_{-49}$ ms and $t_{1/2} = 78.42 \pm 0.51$ ms, respectively, are the most precise values reported hitherto in the literature.

The branching ratio of the superallowed $0^+ \rightarrow 0^+$ transition, $R = 97.94 \pm 1.75\%$, was estimated from the measured γ imbalance of the 2^+_1 level in ⁷⁰Se, as described in Ref. 3). This has allowed for a first estimate of the $\mathcal{F}t$ value associated with this decay, calling for a new mass measurement of ⁷⁰Br in order to confirm the Conserved Vector Current hypothesis.¹⁾

The analyses of the 70,71 Kr β and 71 Kr isomer decays are in progress.

References

- J. C. Hardy, I. S. Towner, Phys. Rev. C 91, 025501 (2015).
- 2) S. Nishimura, Prog. Theor. Exp. Phys. 03C006 (2012).
- 3) A. I. Morales et al., Phys. Rev. C 95, 064327 (2017).