Isomer-decay spectroscopy of ⁶⁷Fe and reaction-channel dependency of isomeric ratios from interactions in the MINOS proton target

P.-A. Söderström,^{*1,*2,*3} L. X. Chung,^{*4} A. Gillibert,^{*5,*3} B. D. Linh,^{*4} A. Obertelli,^{*1,*3,*5} P. Doornenbal,^{*3}

S. Nishimura,^{*3} F. Browne,^{*6,*3} Z. Patel,^{*7} C. Shand,^{*7} J. Wu,^{*3,*8} G. Authelet,^{*5} H. Baba,^{*3} D. Calvet,^{*5}

F. Château, *⁵ A. Corsi, *^{5,*3} A. Delbart, *^{5,*3} Zs. Dombradi, *^{9,*3} S. Franchoo, *¹⁰ J.-M. Gheller, *^{5,*3}

F. Giacoppo,^{*11} A. Gottardo,^{*10} K. Hadyńska-Klęk,^{*11} T. Isobe,^{*3} I. Kojouharov,^{*2} Z. Korkulu,^{*9}
S. Koyama,^{*3,*12} Y. Kubota,^{*3,*13} N. Kurz,^{*2} V. Lapoux,^{*5,*3} J. Lee,^{*14} M. Lettmann,^{*1} C. Louchart,^{*1}
R. Lozeva,^{*15} K. Matsui,^{*3,*12} M. Matsushita,^{*13} T. Miyazaki,^{*3,*12} S. Momiyama,^{*3,*12} T. Motobayashi,^{*3}

M. Niikura,^{*12,*3} L. Olivier,^{*10} S. Ota,^{*13} H. Otsu,^{*3} C. Péron,^{*5} A. Peyaud,^{*5} N. Pietralla,^{*1}

E. C. Pollacco,^{*5,*3} J.-Y. Roussé,^{*5,*3} E. Sahin,^{*11} H. Sakurai,^{*3,*12} C. Santamaria,^{*3,*5} M. Sasano,^{*3} H. Schaffner,^{*2} Y. Shiga,^{*3,*16} I. G. Stefan,^{*10} D. Steppenbeck,^{*13,*3} T. Sumikama,^{*17,*3} D. Suzuki,^{*10}

S. Takeuchi,^{*3} R. Taniuchi,^{*3,*12} T. Uesaka,^{*3} Zs. Vajta,^{*9} H. Wang,^{*3} V. Werner,^{*1} K. Yoneda,^{*3}

In this report, we discuss the properties of the isomeric state in ⁶⁷Fe. While the existence of this isomer is already well established, its nature is still unknown.

The data were obtained using the $EURICA^{1,2}$ setup during the SEASTAR campaign in 2014^{3} by fissioning a 345 MeV/u 238 U beam on a 3 mm-thick beryllium target. Knockout reactions occured in the liquid hydrogen target of MINOS,⁴⁾ installed at the F8 focal plane. At the final focal plane the EURICA array was used for measuring the energy and time between implantation and detection of the γ rays. In this experiment only six EURICA clusters were active. A total of $\sim 3 \times 10^{7.67}$ Fe nuclei were implanted in a stopper in the center of EURICA. Approximately 96% of these implantation were from unreacted ⁶⁷Fe secondary beam, the rest were reaction products in MINOS.

Using the BigRIPS and ZeroDegree information the implanted nuclei could be separated into the main reaction channels: ${}^{68}Co(p, 2p){}^{67}Fe$, ${}^{238}U$ fission, and 68 Fe(p, pn) 67 Fe with isomeric ratios of 56%, 36%, and 28%, respectively. Thus, the isomeric ratio is highest in the proton knock-out channel, but also significant in the other channels. In the Fig. 1, the γ -ray spectra are shown, normalized to the number of incoming ions.

One possible interpretation of the different isomeric ratios is found in the difference in the states of the

*1 Institut für Kernphysik, Technische Universität Darmstadt

- *5CEA. Saclay
- *6 School of Computing, Engineering and Mathematics, University of Brighton
- *7Department of Physics, University of Surrey
- *8 School of Physics, Peking University *9
- MTA Atomki, Debrecen *10
- IPN Orsay, Orsay
- *11 Department of Physics, University of Oslo
- *¹² Department of Physics, University of Tokyo
- *¹³ CNS, University of Tokyo
- *¹⁴ Department of Physics, The University of Hong Kong
- *15 ICSNSM, IN2P3/CNRS, Université Paris-Saclay
- *¹⁶ Department of Physics, Rikkyo University
- $^{\ast 17}$ Department of Physics, Tohoku University

Fig. 1. Spectra of γ rays following isomeric decay separated into the main reaction channels normalised to the respective number of incoming ions.

ternary beam. For ⁶⁸Co there are two long-lived states that can serve as effective ground state configurations of 1⁻ and 7⁻ based on $\pi f_{7/2} \otimes \nu g_{9/2}$. Knocking out a $f_{7/2}$ proton could then leave a $g_{9/2}$ neutron in an excited state, that in turn decays to the isomeric state. With 68 Fe in a 0⁺ ground state, and no other known long lived configurations, the still relatively high isomeric ratio from neutron knockout can be explained by the breaking of a $\nu g_{9/2}^2$ neutron-pair. In summary, such a picture would be consistent with a $\nu g_{9/2}$ -based isomer over a $\nu p_{1/2}$ ground-state.

References

- 1) S. Nishimura, Prog. Theor. Exp. Phys. 2012, 03C006 (2012).
- 2) P.-A. Söderström et al., Nucl. Instrum. Methods B 317, 649 (2013).
- 3) P. Doornenbal et al., RIKEN Accel. Prog. Rep. 48 5 (2015).
- 4) A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).

and Z. Y. Xu^{*14}

^{*2} GSL Darmstadt

^{*3} **RIKEN** Nishina Center

^{*4} INST, Hanoi