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~-decaying isomers and isomeric ratios in the °°Sn region’
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The structure of the heaviest N = Z doubly magic
nucleus '°°Sn and the nuclei in its vicinity has been
investigated in depth both experimentally and theo-
retically.!) Isomeric states in these exotic isotopes con-
tain valuable experimental information on some of the
research topics in this region of nuclides, such as the
robustness of the N = Z = 50 shells and the role of
the proton-neutron interaction in N ~ Z nuclei.

This report contains a summary of results from the
EURICA Xe campaign in 2013 on the y-decaying iso-
mers in the 1°°Sn region. Proton-rich isotopes in 1°Sn
region were produced from fragmentation reactions of
124X e on a ?Be target, and were separated and identi-
fied through BigRIPS and the ZeroDegree spectrome-
ter at the RIBF. They were implanted in WAS3ABi,?)
and time-delayed ~ rays emitted from the isomers of
the implanted nuclei were detected with EURICA®) for
half-life (7' /2) measurements.

Several new results were found: the discovery of
a (47) isomer in 92Rh; the excitation energy of the
(15T) isomer in ?®Ag, and the T} /5 of the (61) isomer
in 8Cd. Figure 1 shows the electromagnetic transi-
tion strengths derived from half-life measurements of
~-decaying isomers observed in this experiment, as well
as the theoretical values from different shell model
(SM) calculations. The SLGM interaction®) uses a
model space of proton and neutron (2py,2,1g9/2) or-
bitals above the 76Sr core. The other SM approaches
are described in the original article. Two sets of pro-
ton and neutron effective charges (a) and (b) were em-
ployed to gauge and account for core polarization ef-
fects. A good agreement between experimental and
theoretical transition strengths was found in general.
However, the transition strengths were significantly
lower than predicted in ?2%3Ru. On the other hand,
experimental transition strengths of the core-excited
(12%) isomer in ?8Cd exceeding SM predictions may
be related to the increased proton core polarization
in light, even-mass Sn isotopes.?) Further theoretical
efforts are needed to address these discrepancies.

In addition, experimental isomeric ratios of both ~-
decaying and p-decaying isomers were determined and
compared with the abrasion-ablation model®”) cou-
pled to the sharp cutoff model. A good agreement
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Fig. 1. Experimental electromagnetic transition strengths
of isomers measured in this work and shell model calcu-
lations. See the text for details on the different models.

between experimental and theoretical values was ob-
tained for positive-parity isomers with J > 4.

No experimental signature of an isomer in 1°°Sn was
found, which was hypothesized from SM.%) With as-
sumptions from SM calculations and the theoretical
isomeric ratio, limits on the y-ray energy and T /o were
proposed on the isomer in °“Sn.
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